
SCALABLE DYNAMIC SYNTHETIC ENVIRONMENTS

USING A 

NEXT-GENERATION GAME ARCHITECTURE

ROBBERT KRIJNEN, RUBEN SMELIK - TNO

Image: Crackdown 3 - Pre-alpha in-game footage



CURRENT STATE OP PLAY

Stovepipe systems Systems in the cloud

Moving existing systems to the cloud

+ Centralized resources

+ “Reusable”

- Still large monolithic applications

- Not really (micro)services

- Hard to change specific behavior



GAMING TRENDS

Agile development – daily releases

Cross-platform play

Cloud integration (game server, physics service, …)

Massive (destructible) game worlds

Cloud-based game development platforms

Cloudgine: Crackdown 3 w. Microsoft Cloud

SpatialOS

Amazon Gamelift

Coherence

Unity – Connected Games services

Image: Crackdown 3 footage



VISION

Stovepipe 
systems

Systems in the 
cloud

Component-
based systems 
and services in 

the cloud

Next-gen 
architecture 

using 
microservices

MSaaS vision



NEXT-GEN ARCHITECTURE USING MICROSERVICES

Everything is a entity

An entity is composed of reusable components (e.g. position, damage state)

Entities live in the cloud (persistent!)

Microservices modify components (movement model, physics simulation, …) 

Microservices interoperate via a data model

“Data everywhere” abstraction

Platform provides load balancing, scalability and reliability

Clients can connect to the cloud

anywhere and anytime (late joining)

Local client (visual) is generated based on 

entities in view

Microservice

Microservice

Microservice

Client

Client 

mockup

Client

visual Data



MICROSERVICES - EXAMPLES

Weapon service (missile trajectory, …)

Weapon effect service (damage)

Dynamic terrain service

Route planning service

Weather service

Data recording service

Performance evaluation service

Mediation services (HLA-C2, DIS-HLA, …)

…

(Micro)service

(Micro)service

(Micro)service

Client

Client

(Micro)service

Client 



ENTITY-COMPONENT-SERVICES EXAMPLES

Position

Target 
navigation

AgendaInfo

Health

Damage behaviour

Path planning

Locomotion

Behaviour pattern

Pattern of life 

MicroservicesNPC entity with components



DEMONSTRATOR - DYNAMIC DESTRUCTION

Use case: fire support

Features:

Geo-specific military training village (Altmark, Germany)

Terrain deformation (craters)

Object destruction

1. Traditional model-switching

2. Dynamic (physics) based destruction using NVIDIA Blast



DEMONSTRATOR - DYNAMIC DESTRUCTION



DEMONSTRATOR - DYNAMIC DESTRUCTION

2100+ entities

1273 wall segments

813 buildings

215 unique 3D models



DEMONSTRATOR - DYNAMIC DESTRUCTION

Network topology

Application topology



DEMONSTRATOR: DESTRUCTIBLE TERRAIN

Data model

Now: used ad-hoc schema

Todo: use concepts from the RPR-FOM

Microservices:

ArtilleryFireService

Munition creator (artillery)

Munition detonation handler

Detonation effect handler

Damage assessment (physics-based destruction)

Damage assessment (model switching)

Entity movement (simple motion model)

Player movement (stealth viewer)



DEMONSTRATOR - LEASONS LEARNED

SpatialOS 

Steep learning curve

Beta (regular version updates that break the API)

Game focus

e.g. data read/write permissions (security / anti-cheat)

performance

User-based access

…

Still need prediction (Dead Reckoning/ interpolation) 

Easy to create gateway to integrate existing HLA applications

Hosting (public cloud, enterprise cloud)

Not an open architecture

Licensing



NEXT-GEN ARCHITECTURE USING MICROSERVICES

Advantages:

1. Centralized approach to ensure data correlation and fair play

2. Interoperability via a data model

3. Scalability / off-load computational work to the cloud (overcome limitations of local client)

4. Separation of concerns (experts work on specialized microservices)

5. (Visual) representation generated by client (Stealth view, Dismounted view, Flightsim, C2 view, …)

6. Multi-resolution (different microservices, data abstraction, …)

7. Centralized configuration, management and monitoring



NEXT-GEN ARCHITECTURE USING MICROSERVICES

Concerns:

Microservice interoperability - Data model (components) needs to be standardized for reuse

Microservice interoperability - Need for clear description of functionality and behavior (app store)

Timing issues (risk of asynchronous updates) 

How to scope a microservice (granularity) 

100 Lines of Code? 1000 Lines of Code?

Single concern, testable behavior



DISCUSSION

For our dynamic SE use case, promising architecture:

Centralized data model allows for dynamic terrain correlation

Performance and scalability of platform allows for complex dynamic effects (building destruction)

Is this the next-generation simulation architecture implementing the MSaaS vision?

To make this work in practice:

Standardize microservice interoperability (data model, API)

Support transition phase and legacy systems

M&S system vendor business model has to change



THANK YOU FOR YOUR 

ATTENTION


